Monday, November 10, 2014

NJP accepted: Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube

Today's good news is that our manuscript "Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube" has been accepted for publication by New Journal of Physics.
In a way, this work is directly building on our previous publication on thermally induced quasiparticles in niobium-carbon nanotube hybrid systes. As a contribution mainly from our theory colleagues, now the modelling of transport processes is enhanced and extended to cotunneling processes within Coulomb blockade. A generalized master equation based on the reduced density matrix approach in the charge conserved regime is derived, applicable to any strength of the intradot interaction and to finite values of the superconducting gap.
We show both theoretically and experimentally that also in cotunneling spectroscopy distinct thermal "replica lines" due to the finite quasiparticle occupation of the superconductor occur at higher temperature T~1K: the now possible transport processes lead to additional conductance both at zero bias and at finite voltage corresponding to an excitation energy; experiment and theoretical result match very well.

"Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube"
S. Ratz, A. Donarini, D. Steininger, T. Geiger, A. Kumar, A. K. Hüttel, Ch. Strunk, and M. Grifoni
New J. Phys. 16, 123040 (2014), arXiv:1408.5000 (PDF)

No comments:

Post a Comment