It's time to announce yet another nice result. Our manuscript "Transport across a carbon nanotube quantum dot contacted with ferromagnetic leads: experiment and non-perturbative modeling" has been accepted as a regular article by Physical Review B.
When ferromagnetic materials are used as contacts for a carbon nanotube at low temperature, the current is strongly influenced by the direction of the contact magnetization via the so-called tunneling magnetoresistance (TMR). Since the nanotube contains a quantum dot, in addition its electronic energy levels play an important role; the TMR depends on the gate voltage value and can reach large negative and positive values. Here, in another fruitful joint experimental and theoretical effort, we present both measurements of the gate-dependent TMR across a "shell" of four Coulomb oscillations, and model them in the so-called "dressed second order" framework. The calculations nicely reproduce the characteristic oscillatory patterns of the TMR gate dependence.
"Transport across a carbon nanotube quantum dot contacted with ferromagnetic leads: experiment and non-perturbative modeling"
A. Dirnaichner, M. Grifoni, A. Prüfling, D. Steininger, A. K. Hüttel, and Ch. Strunk
Phys. Rev. B 91, 195402 (2015); arXiv:1502.02005 (PDF)
No comments:
Post a Comment