Today's great news is that our manuscript "Nanomechanical characterization of the Kondo charge dynamics in a carbon nanotube" has been accepted for publication by Physical Review Letters.
The Kondo effect is a many-body phenomenon at low temperature that results from a quantum state degeneracy, as, e.g., the one of spin states in absence of a magnetic field. In its simplest case, it makes a quantum dot, in our case a carbon nanotube with some trapped electrons on it, behave very different for an even and an odd number of electrons. At an even number of trapped electrons, no current can flow through the nanotube, since temperature and applied bias voltage are too low to charge it with one more elementary charge; this phenomenon is called Coulomb blockade. Strikingly, at odd electron number, when two degenerate quantum states in the nanotube are available, Coulomb blockade seems not to matter, and a large current can flow. Theory explains this by assuming that a localized electron couples to electrons in the contacts, forming a combined, delocalized singlet quantum state.
What carries the Kondo-enhanced current, and how does the electric charge now accumulate in the carbon nanotube? We use the vibration of the macromolecule to measure this. As also in the case of, e.g., a guitar string, the resonance frequency of a nanotube changes when you pull on it; in the case of the carbon nanotube this is sensitive enough to resolve fractions of the force caused by a single elementary charge. From the vibration frequency, as function of the electrostatic potential, we calculate the average number of electrons on the nanotube, and can then compare the odd and even number cases.
A surprising result of our evaluation is that the charge trapped on the nanotube behaves the same way in the even and odd occupation case, even though the current through it is completely different. Sequential tunneling of electrons can model the charge accumulation, and with it the mechanical behaviour. The large Kondo current is carried by virtual occupation of the nanotube alone, i.e., electrons tunneling on and immediately off again so they do not contribute to the charge on it.
"Nanomechanical Characterization of the Kondo Charge Dynamics in a Carbon Nanotube"
K. J. G. Götz, D. R. Schmid, F. J. Schupp, P. L. Stiller, Ch. Strunk, and A. K. Hüttel
Physical Review Letters 120, 246802 (2018); arXiv:1802.00522
(PDF,
HTML,
supplementary information)
Showing posts with label kondo. Show all posts
Showing posts with label kondo. Show all posts
Friday, May 18, 2018
Wednesday, March 11, 2015
PRB accepted: Broken SU(4) symmetry in a Kondo-correlated carbon nanotube
We're happy to be able to announce that our manuscript "Broken SU(4) symmetry in a Kondo-correlated carbon nanotube" has been accepted for publication in Physical Review B.
This manuscript is the result of a joint experimental and theoretical effort. We demonstrate that there is a fundamental difference between cotunneling and the Kondo effect - a distinction that has been debated repeatedly in the past. In carbon nanotubes, the two graphene-derived Dirac points can lead to a two-fold valley degeneracy in addition to spin degeneracy; each orbital "shell" of a confined electronic system can be filled with four electrons. In most nanotubes, these degeneracies are broken by the spin-orbit interaction (due to the wall curvature) and by valley mixing (due to, as recently demonstrated, scattering at the nanotube boundaries). Using an externally applied magnetic field, the quantum states involved in equilibrium (i.e., elastic, zero-bias) and nonequilibrium (i.e., inelastic, finite bias) transitions can be identified. We show theoretically and experimentally that in the case of Kondo correlations, not all quantum state pairs contribute to Kondo-enhanced transport; some of these are forbidden by symmetries stemming from the carbon nanotube single particle Hamiltonian. This is distinctly different from the case of inelastic cotunneling (at higher temperatures and/or weaker quantum dot-lead coupling), where all transitions have been observed in the past.
"Broken SU(4) symmetry in a Kondo-correlated carbon nanotube"
D. R. Schmid, S. Smirnov, M. Marganska, A. Dirnaichner, P. L. Stiller, M. Grifoni, A. K. Hüttel, and Ch. Strunk
Phys. Rev. B 91, 155435 (2015) (PDF)
This manuscript is the result of a joint experimental and theoretical effort. We demonstrate that there is a fundamental difference between cotunneling and the Kondo effect - a distinction that has been debated repeatedly in the past. In carbon nanotubes, the two graphene-derived Dirac points can lead to a two-fold valley degeneracy in addition to spin degeneracy; each orbital "shell" of a confined electronic system can be filled with four electrons. In most nanotubes, these degeneracies are broken by the spin-orbit interaction (due to the wall curvature) and by valley mixing (due to, as recently demonstrated, scattering at the nanotube boundaries). Using an externally applied magnetic field, the quantum states involved in equilibrium (i.e., elastic, zero-bias) and nonequilibrium (i.e., inelastic, finite bias) transitions can be identified. We show theoretically and experimentally that in the case of Kondo correlations, not all quantum state pairs contribute to Kondo-enhanced transport; some of these are forbidden by symmetries stemming from the carbon nanotube single particle Hamiltonian. This is distinctly different from the case of inelastic cotunneling (at higher temperatures and/or weaker quantum dot-lead coupling), where all transitions have been observed in the past.
"Broken SU(4) symmetry in a Kondo-correlated carbon nanotube"
D. R. Schmid, S. Smirnov, M. Marganska, A. Dirnaichner, P. L. Stiller, M. Grifoni, A. K. Hüttel, and Ch. Strunk
Phys. Rev. B 91, 155435 (2015) (PDF)
Labels:
kondo,
nanotubes,
physics,
regensburg,
research-group,
work
Subscribe to:
Posts (Atom)